
FOCUS: THE FUTURE OF SOFTWARE ENGINEERING

0 7 4 0 - 7 4 5 9 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E 	 JANUARY/FEBRUARY 2016 | IEEE SOFTWARE � 89

Intelligently
Transparent
Software
Ecosystems
James Herbsleb, Christian Kästner, and Christopher Bogart,
Carnegie Mellon University

// Intelligently transparent services will support

rapid development of innovative products while

helping developers manage risk and issuing them

early warnings of looming failures. An infrastructure

will apply analytics to data from all phases of

the life cycle of open source projects. //

INNOVATIVE TRANSPARENT en-
vironments such as GitHub, Launch-
Pad, and BitBucket are profoundly
influencing how a new generation
thinks about software development.
They continue a widespread trend
toward openness. It’s no longer sur-
prising that individuals and com-
mercial firms can form communities
that develop and maintain valuable
and freely available software as-
sets. What’s new is the combina-
tion of distributed version control

and social-media features that create
transparent environments that can
scale up software ecosystems well
into the millions of repositories and
developers.1 This trend will acceler-
ate as large-scale data analytics adds
transformative intelligent services.

Increasingly, development is a
matter of selecting useful libraries,
frameworks, and other components
and quickly wiring them together.
The result is impressive functionality
produced rapidly. But this approach

comes with serious risks, as develop-
ers use code without thoroughly un-
derstanding it and create new com-
binations with potentially dangerous
interactions, and as strangers con-
tribute hard-to-evaluate code.

Yet these risks create a business
opportunity. The data that trans-
parent environments generate could
contain the fodder for novel ideas
that will further speed development
and help manage risk. We call this
idea intelligent transparency.

A Hypothetical Scenario:
Big Tax Data
Imagine that in 2020 the IRS an-
nounces it will release an anony-
mized version of its tax return data-
base. Immediately, the race is on to
create applications and services that
will exploit the insights and predic-
tions this database enables.

TaxCoders, a firm supplying tax
software and services, swings into
action. It uses its extensive knowl-
edge of customers’ tax needs to
dream up innovative applications,
such as a tool that lets small busi-
nesses benchmark their tax burden,
deductions, and credits against simi-
lar businesses nationally and by re-
gion. Although TaxCoders has ex-
tensive experience with tax services
and enterprise data, it isn’t confident
it has the tools and infrastructure to
engineer services using data on this
national scale.

Design begins by seeking an ap-
propriate language, Web frame-
work, and database and appropriate
visualization and data manipulation
libraries. Knowing that having the
quickest time to market will confer
a first-mover advantage, TaxCoders
engages a business we envision—an
intelligent software assurance and
monitoring (ISAM) provider. This
provider delivers evidence-based

90	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: THE FUTURE OF SOFTWARE ENGINEERING

component recommendations and,
employing data supplied by exist-
ing customers, issues a range of
early warnings as customer applica-
tions and open source components
evolve.

Recommending Ensembles
The ISAM provider has extensive ex-
perience with open source projects
and knows established and rising
candidates in many fields. Advances
in code search based on recent re-
search in semantic search2 and query
reformulation3 help it find a pool of
candidates. Then comes the step of
choosing among these candidates
and finding suitable components,
which used to be an arduous, highly
uncertain manual process.

The ISAM provider applies ana-
lytics to its proprietary database
of software-in-use to quickly iden-
tify the best candidate ensembles—
stacks or sets of software that work
well together. It maintains extensive
logs of its customers’ past use, which
reveal a substantial history of com-
ponents used together in a variety
of combinations. From runtime data
and test results supplied by past and
current customers, the ISAM pro-
vider uses a variety of analytic tech-
niques4,5 to

•	 identify and eliminate buggy
components,

•	 avoid architectural mismatch,
•	 predict fault-prone ensembles,
•	 estimate the cost of glue code

development for each potential
ensemble, and

•	 tailor its predictions to the cus-
tomers’ environments.

Besides evaluating the technical
characteristics of components and
ensembles, the ISAM provider ef-
fectively uses the detailed activity

and social data available from open
source hosting environments. Cus-
tomers want to avoid immature and
volatile components. They want
well-managed projects, meaning that
issues and code contributions are
handled promptly and profession-
ally. They want projects supported
by a dedicated, skilled community
that will continue to remain vibrant.
On the basis of extensive research on
success in online communities6 and
specifically of knowledge of open
source communities,7 the ISAM pro-
vider applies analytics to a variety
of community variables. These vari-
ables include activities within the
community and its code forks, as
well as the developers’ profiles and
commit histories. The results are
predictions of community sustain-
ability, technical experience and pro-
ficiency, and responsiveness.

The ISAM provider identifies sev-
eral potential ensembles that will
serve TaxCoders’s needs, but with
slightly different quality and risk
profiles. For example, a component
in one candidate ensemble recently
gave rise to a sharp increase in bug
reports when a new database ver-
sion was introduced, but those re-
ports appear to have been resolved.
Another ensemble used a new Web
services framework with a too-small
and too-inexperienced community
of contributors, but community
membership and experience levels
have been trending upward. Sta-
bility analysis of a third ensemble,
based on development observed in
forks, discussions about the need for
specific changes, and a growing list
of related feature requests, hinted
at future backward-compatibility
issues. But all the recommended
ensembles have risk levels accept-
able to TaxCoders, which quickly
chooses an ensemble.

Ongoing Vigilance
Over the next four years, TaxCoders
flourishes, and the new services gen-
erate big revenue. But software evo-
lution brings new risks, especially
because key components aren’t di-
rectly in TaxCoders’s control. Noti-
fication services alert TaxCoders to
emergent risks of community dete-
rioration, such as

•	 reduced repository activity,
•	 rising numbers of unaddressed

bug reports and pull requests,
•	 the development of controversy

in mailing lists and comments,
•	 an increase in changes breaking

backward compatibility, and
•	 a refocusing of activity from the

current repository to one of its
forks.

Another primary risk of reliance
on open source components is that
ensemble elements will become in-
compatible. TaxCoders could get
stuck on old versions, without ben-
efiting from new features, bug fixes,
or security updates. Or, it would
have to manually apply changes and
resolve conflicts. However, with new
notification mechanisms, TaxCod-
ers developers get tailored informa-
tion whenever a component evolves
so that they can react before techni-
cal debt mounts. Basing such notifi-
cations on development forks, well
ahead of product releases, TaxCod-
ers can upgrade quickly on the re-
lease date or even contact developers
to negotiate the changes’ direction.

In addition, the ISAM provider
issues notifications of suggested
changes that have attracted many
comments, hinting at controversy
or complexity, or of substantial
new development in forks. This al-
lows a peek into the project’s fu-
ture. Through timely notification,

	 JANUARY/FEBRUARY 2016 | IEEE SOFTWARE � 91

TaxCoders has had the opportunity
to influence developers, avoid dis-
ruption, and advocate for the inclu-
sion of useful features.

The biggest benefits are that
TaxCoders avoids being taken by
surprise and has the time to plan a
response to risks that arise. In the
next sections, we sketch the two
major design ideas that support this
scenario.

Enhancing Transparency
with Analytics
We borrow Ethan Bernstein’s defini-
tion of transparency: “accurate ob-
servability, of an organization’s low-
level activities, routines, behaviors,
output, and performance.”8 Trans-
parent environments such as GitHub
let anyone

•	 easily fork and manipulate code
in any repository;

•	 examine all commits in forks
and master repositories;

•	 see all comments linked directly
to the artifacts they refer to; and

•	 find detailed information about
people, their activities, and their
social connections.

Transparency makes it much easier
for developers to find useful code
supported by viable communities
and to monitor code they’re using to
detect changes that create problems
or opportunities.9 On the downside,
transparency can present develop-
ers with overwhelming amounts of
information.

Characteristics developers care
about, such as a component’s qual-
ity attributes, often aren’t directly
observable. So, developers use things
they can see as signals from which
they infer hidden software quali-
ties as well as the durability and
responsiveness of the community

maintaining the software. This
practice is currently imperfect and
time-consuming.

Intelligently transparent environ-
ments will streamline and expand
these capabilities. Inferences’ speed
and accuracy will be enhanced by
computational agents that quickly

summarize the information develop-
ers want to see. For example, when
choosing among candidate libraries
or frameworks, developers look for
signals that the project

•	 is “alive,”
•	 has a group of people commit-

ted to it,
•	 evolves without frequent disrup-

tions to downstream projects,
•	 is skillfully managed, and
•	 has been well received by the

community.

A variety of signals are useful for as-
sessing these hidden qualities.10 Such
signals include

•	 the commit velocity,
•	 the diversity of frequent com-

mitters,
•	 the project’s number of stars or

likes,
•	 the number of test cases,
•	 the history of continuous-

integration results, and
•	 a history of issues and pull re-

quests being quickly addressed.

It’s laborious for developers to
manually examine all of the many

signals they wish to see to assess
and compare projects’ suitability.
However, a computational agent
can acquire the data and present it
in a terse format, such as a dash-
board visualization. Many people
are experimenting with such vi-
sualizations (for a collection of

visualizations, see GitHub Visual-
izer; http://ghv.artzub.com). Such
tools can transform tedious tasks
into tasks that quick perusal of a vi-
sual display can resolve.

Future analytics research will
also bring novel forms of informa-
tion that help navigate the challenges
of evolving components. Intelligent
transparency can help developers
discover interesting changes among
a sea of constantly evolving projects.
It can also help identify changes that
encourage further actions, such as
breaking interface changes or new
useful features. Tech Angels’ Gemna-
sium (https://gemnasium.com) is in
this spirit. It notifies users of updates
and security vulnerabilities in any of
their dependencies so that they can
take appropriate action without con-
stantly monitoring all changes in all
their dependencies. In our scenario,
such awareness functionality lets
TaxCoders avoid disruptions and
failures as the open source projects
on which it depends evolve.

Another problem being ad-
dressed is information overload.
Approaches such as YooHoo11 and
NeedFeed12 have shown that devel-
opers can significantly reduce the

Customers want well-managed projects,
meaning that issues and code contributions

are handled promptly and professionally.

92	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: THE FUTURE OF SOFTWARE ENGINEERING

notification clutter in systems such
as GitHub by using simple mecha-
nisms to filter important messages.
For example, YooHoo identifies
those changes that break binary
compatibility in library code—a
mere 7 percent of all changes. Need-
Feed uses code ownership and past
code changes as simple heuristics to
identify relevant changes.

A further strategy to identify rel-
evant changes when they happen,
and even predict changes, will be to
develop stability indicators. Such in-
dicators are derived from activity in
forks, mailing lists, bug trackers, and
other communication channels. Eco-
systems are unpredictable because
the components developers use are
controlled by others who can change
them at will. There are no stability
guarantees. Stability indicators can
provide vital information for both
component developers and users.

Different facets of stability can be
inferred from many sources. For ex-
ample, developers can simply declare
the intent that an interface won’t
change or will remain backward
compatible. In addition, developers
can observe historical stability, both
averages and trends, by mining the
repository.13

Furthermore, by analyzing de-
pendencies in an ecosystem, devel-
opers can derive signals about the
context in which a component is
being used. For example, compo-
nents that are used by other compo-
nents that are intended to be stable
should evolve more conservatively.
Use of components not intended to
be stable indirectly indicates that
the using component will likely
change. A situation in which com-
ponents that are intended to be sta-
ble use historically unstable com-
ponents suggests a stability conflict
that should be addressed.

Abrupt changes or mismatches
among intended, historical, and con-
textual stability provide important,
actionable information for develop-
ers and users. Such information can
help them decide

•	 where to implement new func-
tionality,

•	 what projects and APIs to use,
•	 how to avoid disrupting users,

and
•	 what activity in other reposi

tories requires immediate
attention.

As analytic techniques are refined
and very large-scale datasets become
available, research will push intel-
ligent transparency beyond filtering
and stability, to infer developer in-
tent for a range of use cases from a
range of sources. These analyses will
produce additional notifications and
reports that ISAM can provide in the
longer run, enabling firms like Tax-
Coders to respond proactively.

Examples of such information
include

•	 indicators and signals to identify
commits deserving more atten-
tion or review—for example,
considering the developer’s
experience and the centrality of
the code being changed14 (see
Figure 1, in which the dark or-
ange highlighting indicates such
commits);

•	 the probability that a specific
pull request will be accepted;

•	 a project’s likely future activ-
ity level (new features and bug
fixes);

•	 overdependence on a few core
developers’ continued contribu-
tions; and

•	 a summary, derived from
package managers and clone

detection, of all uses of project
code, broken down by user type
and key use attributes, to help
avoid disrupting users.

Results gathered automatically
by intelligent-transparency mech-
anisms can be visually integrated
into platforms such as GitHub or
provided as an independent ser-
vice. Although intelligence use-
ful for selecting components has
its basis in analysis of reposito-
ries and developer activity, critical
monitoring services will also use
runtime data.

Analyzing Runtime Data
to Provide Monitoring
Using free software grown in the
wild exposes businesses to unpre-
dictable failures and security threats.
ISAM providers will also tackle
these adoption risks. Some ISAM-
like services already exist for internal
use for proprietary software, such as
Apple’s and Microsoft’s OSs, and
some consultants have amassed a lot
of experience in particular domains.
Yet such services aren’t available at
sufficient detail or breadth for mon-
itoring the ecosystems of diverse
open-source software on which busi-
nesses often depend.

Fortunately, some software com-
ponent users are willing to accept
more risk than others. Open source
projects presumably follow a tra-
ditional adoption curve.15 The first
to take them up will have high risk
tolerance coupled with a compel-
ling business need for novel func-
tionality. For example, these adopt-
ers might be writing mobile apps
that don’t touch sensitive data but
require novel computation. If a new
component has features that attract
early adopters, the attention helps
ensure that bugs will be discovered

JANUARY/FEBRUARY 2016 | IEEE SOFTWARE 93

and � xed quickly. If developers can
observe that a component is widely
used in diverse contexts and has
become stable, they’ll regard it as
trustworthy.

Earlier adopters act, in effect, as
� eld testers for those who are more
risk averse, but this has an impact
only if their use is visible. It would
be to any adopter’s advantage to
know what position on the adoption
curve any given project occupies and
exactly what “testing” has been car-
ried out and in which domains, plat-
forms, and con� gurations. ISAM
providers will supply this critical
information.

ISAM providers will monitor the
software’s deployed usage by sup-
plying their customers—with their
knowledge and consent, under ap-
propriate con� dentiality arrange-
ments—with instrumented versions
of the software packages the provid-
ers thinks their customers will want.
These versions will send usage data
back to the providers (see Figure
2). This data will capture what ver-
sion of what software is deployed,
in what hardware and software en-
vironment, how often, how it per-
forms, and the circumstances of
failures. It will even provide a moni-
toring platform for the providers to
capture domain-speci� c statistics of
interest. For webserver software, it
might capture a characterization of
traf� c shape and performance. For
a scienti� c algorithm, it might sum-
marize statistics on the kind of data
fed to the algorithm. For an IDE, it
might record user settings and in-
stalled plug-ins.

Customers will be able to visual-
ize the runtime data in several ways;
Figure 3 shows a prototype. The
graph view (see Figure 3a) shows
which other packages the gtools
package depends on (the solid lines)

FIGURE 1. Color coding to highlight commits in a GitHub repository. Red highlighting

indicates commits that deserve more attention or review. (Source: GitHub; used with

permission.)

94 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: THE FUTURE OF SOFTWARE ENGINEERING

or is frequently used with (the dot-
ted lines). The bar charts (see Figure
3b) show upstream and downstream
dependencies and the frequency with
which the packages are called in a
set of runs.

Of course, runtime data poses
potential privacy issues, but they
might well be surmountable (see the
sidebar).

The advantages for custom-
ers and ISAM providers will be

substantial. For customers, moni-
toring could provide early warning
or ideally let them avoid most fail-
ures and downtime. For example,
if a provider detected a failure at
one customer site, it could imme-
diately contact the software’s open
source developers and work with
them and the customer on a � x. By
informing developers in detail about
how their software is used and how
widespread the impacts of speci� c
failures are likely to be, ISAM pro-
viders will help them establish pri-
orities. The providers could also
contact customers running a simi-
lar con� guration, giving them a de-
tailed warning of a possible failure,
letting them prepare backup plans
or workarounds.

In addition, ISAM providers will
develop proprietary algorithms that
use the vast store of runtime data.
They’ll also make custom assess-
ment reports available to their cus-
tomers, tailored to their tolerance
for risk and priorities among quality
attributes. Customers considering
using a given component or ensem-
ble would bene� t from the accumu-
lated experience of other similarly
situated users. These reports will be
updated frequently because as any
given project gets used more, it pro-
duces more data and becomes more
mature, stable, and secure. Custom-
ers receiving the reports will be in
a much better position to create a
portfolio of software assets that bal-
ances their need for innovation and
their risk tolerance.

Finally, ISAMs could make ba-
sic usage data public to bene� t the
overall ecosystem. Wider use of a
software project compared to its
competitors can further increase its
use, much as receiving likes on news
services tends to lead more people to
read, generating still more likes. For

Open source
hosting service

Intelligent
software
assurance and
monitoring
�rm

Instrumented
software

Selected components

Needs pro�le

Reports and advisories

Evidence-based
recommendations

New
customer

Instrumented versions of
selected components

Existing
customers

Runtime data

FIGURE 2. How intelligent software assurance and monitoring (ISAM) providers will

function. ISAM providers will deliver evidence-based component recommendations.

Using data supplied by existing customers, they’ll also issue a range of early warnings as

customer applications and open source components evolve.

3 downstream dependencies

0 upstream dependencies

compiler: 184 sessions
ggplot2: 10 sessions

doParallel: 187 sessions
glmnet: 187 sessions
combinat: 187 sessions

BradleyTerry2: 37 sessions
gplots: 360 sessions

5 other packages

What users used with gtools
Out of 1,052 sessions

gdata
BradleyTerry2

glmnet

compiler

gplots

ggplot2

0 200 400 600 800 1,000

gdata: 864 sessions

(a) (b)
combinat

doParallel

gtools

FIGURE 3. Visualizing runtime data. (a) Software packages used together. Solid lines

indicate which packages gtools depends on; dotted lines indicate which packages

gtools is used with. (b) Package dependencies and the frequency with which the

packages are called in a set of runs.

JANUARY/FEBRUARY 2016 | IEEE SOFTWARE 95

software, more attention also en-
courages more developers to � x bugs
and offer new functionality. The ex-
tra attention accelerates evolution,
initiating a virtuous cycle of wider
adoption and rapid improvement.

O pen software ecosystems
are a rich source of li-
braries, frameworks, and

code fragments that can reduce pro-
grammer effort and accelerate de-
velopment. Yet they require time
and effort to evaluate, and they ex-
pose users to the risks of poor selec-
tion. They also introduce the uncer-
tainties of becoming dependent on
code whose evolution someone else
controls.

By applying analytics to the de-
tailed activity and communication
traces in transparent environments
and by acquiring and analyzing on-
going runtime data, ISAM providers
will support well-informed choices.
They’ll also issue timely warnings
that help developers either negotiate
for favorable changes in upstream
software or prepare to migrate to al-
ternative components. As developers
become armed with solid, contex-
tualized empirical data and analyt-
ics, software quality will improve,
and development will become faster,
cheaper, and more predictable.

Acknowledgments
We gratefully acknowledge support from

US National Science Foundation grants

1064209, 1322278, and 1111750 and an

Alfred P. Sloan Foundation grant.

References
 1. L. Dabbish et al., “Leveraging Trans-

parency,” IEEE Software, vol. 30,

no. 1, 2013, pp. 37–43.

 2. K.T. Stolee, S. Elbaum, and D. Do-

bos, “Solving the Search for Source

Code,” ACM Trans. Software Eng.

and Methodology, vol. 23, no. 3,

2014, article 26.

 3. L. Martie, T.D. LaToza, and A. van

der Hoek, “CodeExchange: Support-

ing Reformulation of Code Queries

in Context,” to be published in Proc.

30th Int’l Conf. Automated Software

Eng., 2015.

 4. T. Menzies and T. Zimmermann,

“Software Analytics: So What?,”

IEEE Software, vol. 30, no. 4, 2013,

pp. 31–37.

 5. H. Cleve and A. Zeller, “Locating

Causes of Program Failures,” Proc.

27th Int’l Conf. Software Eng. (ICSE

05), 2005, pp. 342–351.

 6. R.E. Kraut and P. Resnick, eds.,

Building Successful Online Commu-

nities: Evidence-Based Social Design,

MIT Press, 2011.

 7. K. Crowston et al., “Free/Libre Open-

Source Software Development: What

We Know and What We Do Not

RUNTIME MONITORING
Software users are rightfully vigilant about software that communicates their ac-
tivities. But there’s an important place for open source software monitoring when
it is done with the users’ knowledge and consent and is for their bene� t. For ex-
ample, XALT tracks the use of both open source and commercial software on su-
percomputers, through shell wrappers that users can choose to use.1 It captures
library and resource use without special instrumentation of the individual pack-
ages. The Condor distributed batch system reported basic data of its own usage
on 50,000 CPUs over 1,000 sites.2 Other examples include usage statistics such
as the Debian Popularity Contest (http://popcon.debian.org) and crash reporting
as in Ubuntu, Mozilla,3 and Microsoft products.4

In our envisioned scenario (see the main article), intelligent software assur-
ance and monitoring (ISAM) customers agree to use instrumented software
versions and provide their runtime data and test results. This agreement oc-
curs under suitable con� dentiality arrangements, as part of a contract that lets
ISAM provide monitoring that wouldn’t be possible without the usage data. Many
software � rms will likely be willing to accept runtime monitoring to reap ISAM’s
bene� ts. Many of their customers will likely consent, as many users do now for
crash reporting and quality improvement.

References
 1. M. Fahey, R. McLay, and K. Agrawal, XALT Design and Installation Manual, 2015; http://

sourceforge.net/projects/xalt/� les.

 2. D. Thain, T. Tannenbaum, and M. Livny, “How to Measure a Large Open-Source Distributed

System,” Concurrency and Computation: Practice and Experience, vol. 18, no. 15, 2006,

pp. 1989–2019.

 3. L. Thomson, “Socorro: Mozilla’s Crash Reporting System,” blog, Mozilla, 19 May 2010;

http://blog.mozilla.com/webdev/2010/05/19/socorro-mozilla-crash-reports.

 4. K. Kinshumann et al., “Debugging in the (Very) Large: Ten Years of Implementation and

Experience,” Comm. ACM, vol. 54, no. 7, 2011, pp. 111—116.

96 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: THE FUTURE OF SOFTWARE ENGINEERING

Know,” ACM Computing Surveys,

vol. 44, no. 2, 2012, article 7.

 8. E.S. Bernstein, “The Transparency

Paradox: A Role for Privacy in Orga-

nizational Learning and Operational

Control,” Administrative Science Q.,

vol. 57, no. 2, 2012, pp. 181–216.

 9. L. Dabbish et al., “Social Coding in

GitHub: Transparency and Col-

laboration in an Open Software

Repository,” Proc. ACM 2012 Conf.

Computer Supported Cooperative

Work, 2012, pp. 1277–1286.

 10. J. Tsay, L. Dabbish, and J. Herbsleb,

“In� uence of Social and Technical

Factors for Evaluating Contribution

in GitHub,” Proc. 36th Int’l Conf.

Software Eng. (ICSE 14), 2014,

pp. 356–366.

 11. R. Holmes and R.J. Walker, “Cus-

tomized Awareness: Recommending

Relevant External Change Events,”

Proc. 32nd ACM/IEEE ACM Int’l

Conf. Software Eng. (ICSE 10), 2010,

pp. 465–474.

 12. R. Padhye, S. Mani, and V.S. Sinha,

“NeedFeed: Taming Change Noti� ca-

tions by Modeling Code Relevance,”

Proc. 29th ACM/IEEE Int’l Conf.

Automated Software Eng. (ASE 14),

2014, pp. 665–676.

 13. G.A. Hall and J.C. Munson, “Soft-

ware Evolution: Code Delta and Code

Churn,” J. Systems and Software,

vol. 54, no. 2, 2000, pp. 111–118.

 14. M. Zhou and A. Mockus, “Developer

Fluency: Achieving True Mastery in

Software Projects,” Proc. 18th ACM

SIGSOFT Int’l Symp. Foundations

of Software Eng. (FSE 10), 2010,

pp. 137–146.

 15. E.M. Rogers, Diffusion of Innova-

tions, 4th ed., 1995, Free Press.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

JAMES HERBSLEB is a professor in the Institute for Software

Research in Carnegie Mellon University’s School of Com-

puter Science, where he directs the Societal Computing PhD

program. His research interests lie primarily in the intersection

of software, computer-supported cooperative work, and socio-

technical systems, focusing on such areas as geographically

distributed teams and large-scale open production communi-

ties. Herbsleb received a PhD in psychology from the University

of Nebraska. Contact him at jdh@cs.cmu.edu.

CHRISTIAN KÄSTNER is an assistant professor in Carnegie

Mellon University’s School of Computer Science. He’s interested

in controlling the complexity caused by software system

variability. He develops mechanisms, languages, and tools to

implement variability in a disciplined way, to detect errors, and

to improve program comprehension in highly variable systems.

Kästner received a doctorate in computer science from the

University of Magdeburg. Contact him at kaestner@cs.cmu.edu.

CHRISTOPHER BOGART is a postdoctoral researcher at Car -

negie Mellon University’s Institute for Software Research. His

research interests include how and why scientists create soft-

ware, and software development’s human-computer-interaction

aspects. Bogart received a PhD in computer science from Oregon

State University. Contact him at cbogart@cs.cmu.edu.

